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Abstract 
 15 
Land restoration is of critical importance in Rwanda, where land degradation negatively impacts crop 
productivity, water, food and nutrition security. We implemented the Land Degradation Surveillance 
Framework in Kayonza and Nyagatare districts in eastern Rwanda to assess baseline status of key soil 
and land health indicators, including soil organic carbon (SOC) and soil erosion prevalence. We 
collected 300 topsoil (0-20cm) and 281 subsoil (20-50cm) samples from two 100 km2 sites. We coupled 20 
the soil health indicators with vegetation structure, tree density and tree diversity assessments. Mean 
topsoil organic carbon was low overall, 20.9 g kg-1 in Kayonza and 17.3 g kg-1 in Nyagatare.  Stable 
carbon isotope values (d13CV-PDB ) ranged from -15.35 to  -21.34 ‰ indicating a wide range of plant 
communities with both C3 and C4 photosynthetic pathways. Soil carbon content decreased  with 
increasing sand content across both sites and at both sampling depths and was lowest in croplands 25 
compared to shrubland, woodland and grasslands. Field-saturated hydraulic conductivity (Kfs) was 
estimated based on infiltration measurements, with a median of 76 mm h-1 in Kayonza and  62 mm h-1 
in Nyagatare, respectively. Topsoil OC had a positive effect on Kfs, whereas pH, sand and compaction 
had negative effects. Soil erosion was highest in plots classified as woodland and shrubland. Maps of 
soil erosion and SOC at 30-m resolution were produced with high accuracy and showed high variability 30 
across the region. These data and analysis demonstrate the importance of systematically monitoring 
multiple indicators at multiple spatial scales to assess drivers of degradation and their impact on soil 
organic carbon dynamics. 

1. Introduction 

Land degradation is inextricably linked to sustainable livelihoods and negatively impacts over 3.2 35 
billion people each year globally (IPBES, 2018) through the loss of agricultural productivity and 
diminishing livelihood options for the rural poor in particular. Land degradation also adversely affects 
the resilience of social-ecological systems to climate change through a reduction of their adaptive 
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capacity. In other words, the combined impacts of land degradation and climate change currently 
represent a significant risk to global food security (Webb et al., 2017) particularly when considering 40 
positive feedback effects between processes such as more erratic and intensive rainfall and soil erosion, 
for example. Similarly, land degradation strongly impacts the loss of biodiversity globally, further 
reducing the adaptive capacity of ecosystems in the face of climate change (Gisladottir and Stocking, 
2005), which means that we cannot tackle any of these global challenges in isolation. 
 45 
Efforts to avoid, reduce and reverse land degradation are therefore critical if the Sustainable 
Development Goals (SDGs) are to be achieved (IPBES, 2018).  Furthermore, SDG 15.3, Life of Land 
has set ambitious targets for land degradation neutrality combining indicators of soil health and 
aboveground productivity (Cowie et al., 2018). Projections have also been calculated to estimate the 
green house gas capture and soil carbon sequestration of various natural climate solutions restore 50 
degraded ecosytems, and avoid degradation altogether (Griscom et al., 2017). In line with this thinking, 
forest and land restoration aims to regain ecological functions, including biodiversity, improve soil 
health and enhance human well-being across landscapes (Chazdon, 2008; Chazdon et al., 2016). The 
UN Decade on Ecosystem Restoration offers promising opportunities to stimulate efforts on the ground. 
However, ecosystems are complex and multiple biophysical and socio-economic factors need to be 55 
considered when targeting, planning, implementing and tracking restoration on the ground. This 
includes understanding the spatial and biogeochemical variations of the soil ecosystem, which is the 
foundation for biophysical land restoration efforts given its role in global net primary productivity.  
 
Land degradation is a critical challenge for Rwanda, which has set a goal to achieve land degradation 60 
neutrality by 2030. In 2011, Rwanda was the first country in Africa to commit to a restoration target of 
degraded lands and forests under the Bonn Challenge, pledging to restore 2 million ha, corresponding to 
76% of the country. Underlying causes of land degradation in the country include unsustainable farming 
and grazing practices, overexploitation of forests and woodlands, settlements and urbanisation 
(Bizimana, 2018). Furthermore, Rwanda has a high average population density at 414 people per km2 65 
though varying by  district (National Institute of Statistics of Rwanda (NISR), 2012). The majority of 
the country’s land (70%) is devoted to subsistence agriculture, fuel wood and timber production for 
energy needs  (National Institute of Statistics of Rwanda (NISR), 2012).  
 
One of the major processes of land degradation in Rwanda is accelerated soil erosion, which is driven 70 
by unsustainable agricultural practices, particularly in steeply sloping lands (Karamage et al., 2016). 
This is further execrated by intense rainfall events, resulting in increased rainfall erosivity (Rutebuka et 
al., 2020) and the increasing energy demands of a growing population resulting in deforestation and loss 
of vegetation cover in general (Mukuralinda et al., 2016). Soil erosion is severe with mean national rates 
of 250 Mg ha-1 yr-1, and studies showing as much as 421 Mg ha-1 yr-1 in croplands (Karamage et al., 75 
2016).   
 
Considering that the agricultural sector contributes significantly to the national economy and that 90% 
of the population depends on agriculture for their livelihoods, tackling land degradation and restoring 
degraded land is of critical importance for Rwanda. Studies suggest that investments in soil 80 
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conversation and land productivity are contributing to reduced land degradation and increased 
agricultural productivity in Rwanda (Bidogeza et al., 2015; Byiringiro and Reardon, 1996; Fleskens, 
2007; Bizoza and De Graaff, 2012; Karamage et al., 2016). For example, various forms of terracing 
have been implemented across Rwanda to specifically curb the negative effects intensive farming on 
steep slopes has on soil fertility and soil loss (Kagabo et al., 2013) and studies also show that terracing 85 
coupled with building organic matter has the potential to be financially profitable when access labour 
and manure is  facilitated (Bizoza and de Graaff, 2012). Furthermore, there is a real need for a systems 
approach to sustainable agricultural intensification that spans from appropriate technologies to 
institutional and policy-level support (Schut et al., 2016; Vanlauwe et al., 2014). In addition, tree-based 
ecosystem approaches have also been suggested to meet the multiple demands of farming households, 90 
including in Rwanda (Iiyama et al., 2018).  
 
Despite these measures, about 77% of Rwanda’s total surface area was estimated to be threatened by 
soil erosion in 2005. Studies evaluating the effects of land use change and conversion of forest to 
agricultural land have reported a loss of soil organic matter and nitrogen while significantly increasing 95 
bulk density (Bizuhoraho et al., 2018). Spatially explicit assessments of soil erosion prevalence and soil 
properties such as soil organic carbon (SOC) have been missing to date for Rwanda, making the 
targeting and tracking of land restoration efforts difficult. Enabling better targeting and tracking of 
interventions will be critical given the mainstreaming of land restoration through national programmes, 
including 708,628 ha under restoration with agroforestry reported by IUCN (Dave et al., 2019), based 100 
on an assessment of the potential for Forest Landscape Restoration (FLR) conducted in 2014 
(Mukashema et al., 2014). 
 
In particular, the Eastern Province of Rwanda has experience high deforestation. It is estimated that 
23% of the remaining forest cover in Eastern Province was lost between 2009 to 2019  ((MOE), 2019).  105 
There is a large gap in terms of supply and demand for wood energy for cooking, which has resulted in 
over-exploitation and degradation of remaining tree/shrub resources. Also, prolonged droughts as a 
result of climate change (IPCC 2019) are not only exacerbating many of the ongoing land degradation 
processes in the region but have also resulted in new degradation pathways in natural and seminatural 
ecosystems.  110 
 
To address land degradation across sub-Saharan African and Rwanda in particular, the Regreening 
Africa project aims to restore 70,000 hectares of degraded lands and benefitting 100,000 households in 
Rwanda. It is part of the emerging “research in development” programmes where research is carried out 
hand in hand with development interventions to enable actors to identify options that are locally 115 
relevant and adapted to the ecological and social contexts (Coe et al., 2014). The programme  applies an 
‘options by context approach’) in understanding the local drivers and indicators of land degradation and 
identifying locally relevant innovations to address them (Sinclair and Coe, 2019). A key element of the 
‘options by content approach’ is to understand the variation in biophysical (and also socio-economic) 
context, that includes multiple variables that may influence not only uptake of restoration approaches, 120 
but also their appropriateness and potential success. Therefore, this study was commissioned to 
understand the extent of land degradation across two key action districts in Rwanda, Nyagatare and 
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Kayonza and to feed this information into the learning and decision cycle of stakeholders across the 
project. Key aspects often missing in assessments of land degradation are the multiple scale scales as 
well as the interaction of multiple indicators. Therefore, there is a real need to include multiple 125 
indicators when assessing drivers of land degradation as well as soil organic carbon dynamics. 
 
In this paper we applied a systematic approach to the collection of soil health and land degradation 
indicators, including the use of consistent laboratory procedures, using the Land Degradation 
Surveillance Framework (LDSF) (Vågen et al., 2013; Leigh Winowiecki et al., 2016). We assessed the 130 
relationship between inherent soil properties such as texture and SOC, as well as the influence of 
various soil properties on field-saturated hydraulic conductivity, in addition to human-induced 
processes such as soil erosion.  We also assess the current status of vegetation structures across the 
landscape, including assessing tree densities and tree species diversity, which are often considered key 
indicators of restoration. We present spatially explicit assessments and maps of SOC for eastern 135 
Rwanda and explore key biogeochemical and human-induced driver of SOC across landscapes in the 
eastern part of the country. Specific objectives of this study were to: 1) Assess soil and land health 
parameters across the action sites; 2) Understand the drivers of SOC dynamics; 3) Develop hot-spot 
maps of soil erosion and soil organic carbon for interventions. 

2. Methods 140 

2.1. Site Description 

Nyagatare is the largest dairy district in Rwanda and is characterised by two main seasons: one long dry 
season and a short rainy season. Its annual average temperature varying between 25.3 and 27.7 °C, and 
receives an annual rainfall of 827 mm, however predictability of rainfall has decreased overtime.  The 
average altitude is 1513m.  It consists of gently sloping hills separated by low granitic valleys. The 145 
vegetation type was originally savannah vegetation and some gallery forestry. From 2009 to 2019, the 
deforestation and afforestation rates were 34% and 18%, respectively (MoE, 2019). The major 
economic activity is subsistence farming while the main source of cooking energy is fuel wood. 
Multiple crops are cultivated in Nyagatare including, maize, beans, groundnut, cassava, irish potatoes, 
banana, yams, among others. Some areas have been cultivatetd for  100 years with major conversion 150 
events in 1973 and 1995. 
 
 
Kayonza district has a mean altitude of 1428 m while mean annual rainfall is 919 mm (NISR, 2012) 
From 2009 to 2019, the deforestation and afforestation rates were 20% and 6% respectively (MoE, 155 
2019).  It is prone to long drought events with two principal seasons, a long dry period and a short rainy 
season.  Both districts are heavily impacted by agriculture.  Crops cultivated in Kayonza include beans, 
banana, cassava, maize, irish potatoe, sorghum, cocoa yams, among others. Most of the area has been 
cultivated for over 50 years, with mining activities also taking place. 
 160 
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2.2. Field Sampling using the Land Degradation Surveillance Framework  

The LDSF was developed by the World Agroforestry (ICRAF) in response to the need for consistent 
field methods and indicator frameworks to assess land health in landscapes. The framework has been 
applied in projects across the global tropics (Vågen et al., 2016; Vågen and Winowiecki, 2020, 2019) 
and is currently one of the largest land health databases globally with more than 30,000 observations, 165 
The LDSF uses a hierarchical sampling design to assess multiple geo-referenced indicators at multiple 
scales, e.g., each 100 km2 site is stratified into 16-1km2 clusters each containing 10-1000 m2 plots and 
4-100 m2 subplots (L. Winowiecki et al., 2016). This multi-scale, randomized sampling design enables 
robust analysis of drivers of degradation as well as the production of predictive maps of soil health 
indicators, for example soil organic carbon (Vågen et al., 2018). 170 
 
Measurements took place at the plot and subplot levels. For example, vegetation structure at the plot 
level was classified using the FAO Land Cover Classification System (LCCS), which was developed in 
the context of the FAO-AFRICOVER project (Di Gregorio, A., and Jansen, 2000). In the LDSF, trees 
are classified as woody vegetation above 3.0m tall. All trees were counted and identified to species 175 
level in each of the four subplots, per plot. Soil erosion was scored and classified in each subplot (n=4) 
per plot. Soil samples were collected at 0-20 cm (topsoil) and 20-50 cm (subsoil) depth by combining 
samples from the four subplots per LDSF plot into one composite sample at the plot level. 
 
Infiltration capacity was measured at three plots per cluster in each site using single ring infiltrometers 180 
(Bouwer, 1986) to assess variation across land uses and soil types. Soil infiltration capacity into dry 
soils follows a predictable temporal pattern: it is high in the early stages of infiltration and tends to 
decline gradually as the soil moisture content increases until it eventually approaches a nearly constant 
rate known as steady-state infiltration capacity (Horton, 1940). This steady-state rate is independent of 
the initial soil water content and approximates the soil’s saturated hydraulic conductivity. Infiltration 185 
measurements were carried out at the center of each plot using a metal cylinder with an inner diameter 
of 15.6 cm and 20 cm in height for two hours and a half to ensure capturing steady-state conditions.   
 
Field-saturated hydraulic conductivity (Kfs) (Reynolds and Elrick, 1990) was calculated from the 
infiltration data using the analytical formula proposed by  (Nimmo et al., 2009). First, infiltration rates 190 
were corrected for non-constant falling head and subsurface lateral spreading effects. For each plot, an 
asymptotic function was then fitted to its corrected infiltration curve using the nls.multstart package in 
R (Padfield and Matheson, 2018) to obtain the asymptote, which represents Kfs.  
 
The effects of soil and land use and land cover variables on Kfs were assessed with linear mixed effects 195 
models using the lme4 (Bates et al., 2015)  package in R. Random effects intercept models were fitted 
using the lmer function, with random intercept for each level of site and for each level of cluster within 
site (nested grouping factors).  
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2.3. Laboratory Methods 200 

Upon collection, all soil samples were processed locally, air-dried and ground to pass through a 2-mm 
sieve. Further grinding was conducted on a subsample using a Retsch motor grinder to attain a particle 
size between 20 and 53 microns. This subsample was analyzed in triplicate  for MIR absorbance using 
the Tensor 27 HTS-XT from Bruker Optics located at the ICRAF Soil–Plant Spectral Diagnostics 
Laboratory in Nairobi, Kenya. The measured wavebands ranged from 4000 to 601 cm-1 with a 205 
resolution of 4 cm-1. Processing of the MIR spectra included computing the first derivatives computed 
using a Savitsky-Golay polynomial smoothing filter implemented in the locpoly function of the KernS- 
mooth R package  (Wand, 2015) as outline in  Terhoeven-urselmans et al., (2010). 
 
Wet chemistry reference analysis was conducted on 10% of the collected soil samples. Soil samples 210 
with both MIR spectra and associated wet chemistry data were used to develop the MIR prediction 
models for the various soil properties (Vågen et al., 2016).  pH was analyzed in a 1:2 H2O mixture that 
was shaken for 30 min at moderate speed on a horizontal shaker then let stand for 20 min before reading 
on a Eutech Cyberscan 1100 pH meter. Exchangeable bases were extracted using a Mehlich- 3 method 
after five minutes on a reciprocating shaker. The filtrate was analyzed for base cations: potassium (K), 215 
calcium (Ca), magnesium (Mg) and sodium (Na) on ICP OES (Model-Thermo iCAP6000 Series) at 
Crop Nutrition Laboratory Services in Nairobi, Kenya. Total nitrogen, organic carbon and stable carbon 
isotopes (d13C)were measured by dry combustion using an Elemental Analyzer Isotope Ratio Mass 
Spectrometry (EA-IRMS) from Europa Scientific after removing inorganic C with 0.1 N HCl, at the 
IsoAnalytical Laboratory located in the United Kingdom.  220 
 

2.4. Prediction of soil properties from MIR soil spectroscopy 

We used the random forest (RF) algorithm to predict soil properties based on MIR absorbance spectra 
for the two sites in Rwanda. In this approach, many decision trees are built based on a random subset of 
the input MIR spectra and these trees are combined to predict the different soil properties. The RF 225 
models were based on the full library of soil samples with associated soil reference data for each soil 
property. The number of reference samples used for model development and testing were 10,820 for 
SOC, 7,305 for soil pH, 4,322 for soil texture and 1,657 for d13C. In training the prediction models, we 
randomly selected 70% of the samples for each soil property, keeping the remaining 30% out for testing 
of the models. We then calculated R2 and Root Mean Square Error of Prediction (RMSEP) values for 230 
the training and test dataset to assess model performance. 

2.5. Landscape level mapping of soil erosion and SOC 

Using LDSF soil and baseline data from a total of 30,853 sites in 40 countries, including the two sites 
included in this study, random forest models were developed to predict and spatially assess SOC and 
soil erosion prevalence across eastern Rwanda. The approach we followed in this study is described in 235 
Vågen et al. (2013), but applying Landsat 8 rather than Landsat 7 satellite imagery. Given that all LDSF 
plots are georeferenced we can extract the Landsat 8 spectral band values for each plot in the database 
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and link these to field observations of soil erosion and MIR predicted SOC, respectively. This allows us 
to develop predictive models for assessments of these variables across larger landscapes.  

3. Results 240 

3.1. Vegetation structure and diversity in theLDSF plots sampled 

Field surveys took place between October and November 2018. In total, 155 plots were sampled in 
Kayonza and 149 plots were sampled in Nyagatare.  Sixty-eight percent  of the sampled plots in 
Kayonza were classified as cultivated and 89% in Nyagatare. Other vegetation structure classes 
included shrubland, woodland and grassland. Median tree densities were similar for each site (25 tree 245 
ha-1), though average tree density was higher  in Nyagatare (120 tree ha-1) compared to Kayonza (68 
tree ha-1). Overall this level of tree density is low, and the higher tree densities only occurred in 
woodlots of Eucalyptus spp. (Figure 1). In total 62 unique tree species were identified in the two LDSF 
sites. The most common species was: Eucalyptus spp.,  followed by Grevillea robusta, Euphorbia 
tirucalli, Ricinus communis, Mangifera indica, Carica papaya and Senna spectabillis (Figure 2). 250 
Differences were observed between the two LDSF sites, most notably that Jatropha curcas was only 
found in Kayonza and Senna singueana was only found in Nyagatare. (Figure 2). In summary, 48 
unique species were observed in Kayonza and 39 species in Nyagatare. This level of tree diversity is 
considered quite low, with a low occurrence of most species and few indigenous species. For example, 
171 (56%) of the sampled plots had Eucalyptus spp., including 125 of the cropland plots (53%). 255 
 

3.2. MIR prediction results for soil properties 

Prediction performance was good for the soil properties included in the study, including for the 
prediction of d13C, as summarised in Table 1. The prediction model performance for d13C is similar to 
that reported by (Winowiecki et al., 2017) when predicting d13C based on near-infrared (NIR) 260 
spectroscopy. Figure 3 shows predicted versus measured SOC and d13C, respectively, for Nyagatare 
and Kayonza, showing good model performance across a wide range of SOC and d13C, respectively.  

3.3. Soil properties and erosion prevalence 

Soil properties for top and sub soil samples for Kayonza (n= 151, 136) and Nyagatare (n= 149, 145) 
LDSF sites are presented in Table 2. Density plots for the soil variables demonstrate the variability 265 
between and within the sites (Figure 2). Overall, pH values were low across the two sites, with mean 
topsoil pH in Kayonza being 5.65 and 5.89 in Nyagatare. This level of pH can potentially limit 
agricultural production. Both sites had low overall exchangeable bases (Ca, K, Mg, Na), especially 
considering that 8 cmolc kg-1 is considered critically low for agricultural productivity. For example, 
Kayonza had slightly higher clay content and lower sand content compared to Nyagatare. 270 
Correspondingly, Nyagatare had higher topsoil OC content (20.9 g kg-1) compared to  Kayonza 17.3 g 
kg-1). Figure 5 shows the relationship between sand content and SOC content, with SOC increasing 
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with decreased sand content, for both sites and both depths (Figure 5). In addition, topsoil OC was 
lowest in the cropland plots compared to the other vegetation classes, even given the high variation. 
Average d13C was -18.9 ‰ in Kayonza and -19.2 ‰, in Nyagatare, which indicates that these are 275 
mixed C3-C4 systems. We also assess the variation of stable carbon isotopes across the vegetation 
structure classes (Figure 6). Even woodland plots, which are generally Eucalyptus plantations, were 
previously cultivated, hence the mixed  signal. 
 
Kayonza had higher soil erosion prevalence with 45% of the plots considered severely eroded, 280 
compared to 27% of the sampled plots in Nyagatare. The dominate erosion categories were rill and 
sheet. Severe erosion was more prevalent in woodland (91%), shrubland and grassland (77%), 
compared to cropland (25%). This is most likely given the high prevalence of terracing in the region as 
well as the location of the cropping fields compared to woodland and bushland. For example the 
average slope for the plots classified as cultivated was seven degrees compared to 19 degrees for the 285 
other vegetation classes.  

3.4. Infiltration capacity 

Median topsoil field-saturated hydraulic conductivity (Kfs) in Kayonza was 76 mm h-1, whereas in 
Nyagatare it was 62 mm h-1 (Figure 7). In Kayonza, Kfs was not only higher but also more variable than 
in Nyagatare, with an interquartile range (upper quartile – lower quartile) of 77 mm h-1 and 42 mm h-1, 290 
respectively.  
 
Results from the linear mixed effects models showed that topsoil SOC content had a positive effect on 
Kfs, whereas pH and sand content had a negative effect. The presence of root depth restrictions above 
20 cm depth also had a negative effect on Kfs. The effect of vegetation structure on Kfs could not be 295 
assessed, as most of the plots where infiltration was measured were on cropland.  
 

3.5. Soil mapping 

Soil erosion prevalence was predicted with a high degree of accuracy using Landsat 8 satellite data, 
with an out-of-bag prediction error of 14%. The receiver operator characteristics (ROC) curve also 300 
indicates good model performance with the area under the ROC curve (AUC) calculated at 0.86. These 
results are expected given results from previous studies using remote sensing to predict erosion (Vågen 
et al., 2013; Vågen and Winowiecki, 2019). Soil erosion prevalence was mapped at 30-m resolution for 
2018. Hotspots of erosion are shown in red/yellow for each of the maps below. This map shows high 
spatial variability in erosion across eastern Rwanda as well as hotpots for interventions.  305 
 
The prediction model performance for SOC was also good, with an R2 of 0.82 based on the out-of-bag 
prediction results from the random forest model (Figure 9). The map of SOC shows  high variation of 
SOC across eastern Rwanda, with higher SOC in the western part and lower SOC moving east until the 
wetlands, which have higher SOC. Both LDSF sites located between this gradient of SOC values. These 310 
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maps can be used to track SOC overtime and in response to interventions. There is higher SOC in 
wetlands and in lower lying areas, including along rivers and less carbon in the more intensively 
cultivated areas in the northeastern  part of Nyagatare district, for example. 
 

4. Discussion 315 

There is a real need for developing a robust set of soil and land health indicators for monitoring 
ecosystem restoration interventions over time and across multiple scales.  By conducting multi-scale 
assessments of land and soil health across landscapes, we are able to provide analysis at the farm level, 
across landscapes to inform ecosystem health investments. However, landscapes are complex and linear 
relationships do not always exist, therefore addressing the complexity across the interactions of multiple 320 
indicators is important. 
 
Healthy soil is the foundation for functioning ecosystems, including sustainable agricultural systems, 
rangelands, wetlands and forests. It is a prerequisite for land-based ecosystem restoration. However, 
there are inherent soil properties, such as those influenced by parent material, for example, that can limit 325 
the ability of the soil to store or sequester carbon. These data showed a strong relationship between 
inherent soil properties, such as sand content, and SOC. The trend of decreasing SOC with increasing 
sand content in these data was also observed in the LDSF data from Tanzania (Winowiecki et al., 2016). 
As expected, SOC content had a positive effect on Kfs. Topsoil SOC in Kayonza was higher than in 
Nyagatare, and so was Kfs. Sand content, pH and soil compaction had a negative effect on Kfs. This 330 
indicates the complexity in determining hydrologic controls. However, when infiltration of water into 
the soil is poor (slow), surface runoff increases, leading to increased soil erosion. Therefore 
understanding how to better manage soil to increase infiltration rates is an important restoration 
intervention. 
 335 
Soil erosion was more prominent in the woodland, shrubland and grassland plots compared to the 
cropland plots. The same trend was seen with SOC content, lower SOC in cropland plots compared to 
the other vegetation classes. Given the croplands are managed, there is high potential to improve soil 
health, including increasing SOC through improved management practices.  
 340 
 
In the case of the two districts in eastern Rwanda, both Nyagatare and Kayonza had low overall soil pH 
and exchangeable bases. While SOC content hovered around the 20 g kg-1 threshold set for temperate 
regions, we were not able to compare these sites with naturally vegetated, undisturbed sites, as all of the 
plots in both LDSF plots were on cultivated or heavily managed sites. This was also re-enforced by the 345 
mixed C3-C4 signal in the d13C data, none of the soil samples from the plots exhibited dominant C3 or 
C4 photosynthetic pathways.  
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Tree planting is in the global spotlight as a restoration activity that has high potential for climate change 
mitigation, while provide multiple other ecosystem services (Bastin et al., 2019). In Rwanda, there are 350 
multiple tree planting campaigns from the Government as well as within the Development Sector. 
However, overall tree densities in both districts were low as was species diversity. In addition, the 
species inventory indicated that mostly exotic species were recorded. These findings are similar to what 
was found as most common agroforestry species in other regions of Rwanda (Bucagu et al., 2013; 
Iiyama et al., 2018). These results highlight the opportunity for the strategic inclusion of useful and 355 
appropriate tree species that fulfill multiple ecosystem benefits, including the inclusion of indigenous 
tree species on farm. 
 
By applying a consistent indicator frameworks such as the LDSF, which combines systematic field 
measurement with and innovative laboratory methods and advanced data analytics, we are able to 360 
conduct spatial assessments of SOC and other land health indicators at multiple spatial scales, with high 
accuracy and application for not only targeting but tracking changes overtime. For example, by 
mapping SOC at 30-m resolution, we are able to pick up spatial patterns related to both land 
management and inherent soil properties, tot identify drivers of degradation. 
 365 

5. Conclusions 

Rwanda is one of the most progressive countries in the region in terms of acknowledging the important 
of land restoration for sustainable livelihoods in the country. It has set ambition targets over the next 
decade, aiming to restore more than 76% of its land area. Given the importance of the agricultural sector 
in the country and widespread land degradation due to a combination of deforestation and unsustainable 370 
agricultural practices, there is a need for evidence to support the targeting of land restoration efforts, as 
well as the tracking of the effectiveness of such interventions over time. In addition, by combining 
systematic field based surveys with earth observation data, we can model and map SOC concentrations 
with high accuracy, allowing us to track interventions overtime. 
  375 
In this paper we have shown the importance of understanding both biogeochemical and human-induced 
drivers of indicators important for land restoration, such as soil organic carbon. We argue that there is 
an urgent need for systematic assessments of soil organic carbon, as well as aboveground biodiversity 
(e.g., tree diversity), combined with hydrologic properties, along with other indicators of land 
degradation such as soil erosion, that are spatially explicit and allow for targeted interventions across 380 
landscapes. This will not only ensure that appropriate interventions for land restoration are 
implemented, but also provide the evidence base to religiously assess their effectiveness.  
 
 
 385 
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 535 
 
 
 
 
 540 
 
 

Table 1:Prediction model performance metrics for the prediction of soil properties from MIR spectroscopy included in the study. 

Soil property R2 RMSEP 
 Training Testing Training Testing 
SOC 0.99 0.92 1.3 3.3 
d13C 0.97 0.72 0.8 1.8 
pH 0.97 0.84 0.2 0.4 
Sum of exchangeable bases 0.96 0.84 3.9 8.2 
Sand 0.98 0.84 3.1 8.9 
Clay 0.98 0.82 3.5 10.1 

 
 545 
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Table 2:  Soil properties for top and sub soil samples at the two LDSF sites (SD = standard deviation, ExBases 
is exchangeable bases) . 

Site  Depth
  

N Mean  
SOC   

SD  
SOC  

Mean 
d13C 

SD 
dC13 

Mean 
pH  

SD  
pH  

Mean 
ExBae

s 

SD 
ExBas

es 

Mean 
Sand  

SD 
Sand   

Mean 
Clay  

SD 
Clay 

 cm  g kg-1 ‰  cmolc kg-1 % 

Kayo
nza  

0-20 151  20.9  8.83 -18.9 1.15 5.65  0.68  10.3 8.69 19.8  9.29  58.4 11.5 

  20-50  136  16.9  7.96 -18.4 1.26 5.65  0.65  10.6 9.10 19.4  9.27  60.6 11.4 

Nyaga
tare  

0-20 149  17.3  6.07  -19.2 0.92 5.89 0.54  8.74 4.80 30.0  10.2 44.5 10.5 

 20-50 145 13.3 5.49 -18.7 0.97 5.88 0.55 8.44 5.77 30.0 10.5 45.8 11.4 
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Figure 1: Violin plots showing the variation in tree densities across the vegetation classes at both LDSF sites. The dotted line is the 
median (25 tree ha-1). 
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Figure 2: Tree species across the two LDSF sites. Sixty-two different species were recorded, with low occurrence of most species, 
and few indigenous tree species. 
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 560 
Figure 3. Predicted vs measured SOC and d13C based on MIR spectra for the two sites included in the study. 
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 565 
Figure 4: Density plots of soil organic carbon (SOC), clay, exchangeable bases (ExBases), and pH for the top and sub soil samples 
at Kayonza and Nygatare. 
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Figure 5: Relationship between sand content and soil organic carbon (SOC) for both top and sub soil samples at Kayonza nnd 
Nyagatare LDSF sites. 575 
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 590 
 
 
 

 
 595 
Figure 6: Boxplots of d13C values in topsoil  and topsoil OC content for each vegetation structure class. Dotted vertical lines at -22 
and -14 ‰ indicate the C3 and C4 dominated systems, respectively. The dotted line at 20 g kg-1 SOC is to indicate a threshold for 
agricultural productivity in humid areas. 
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Figure 7: Box and violin plots of field-saturated hydraulic conductivity (Kfs) for each LDSF site. The three horizontal lines in the 605 
box plot show the lower quartile, the median, and the upper quartile. Whiskers extend to the outer-most data point that falls within 
1.5 box lengths. The violin plots show the distribution of the Kfs data. 
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Figure 8:Map of soil erosion prevalence (%) predicted based on Landsat 8 satellite imagery and field data from the LDSF plots. 
The two LDSF sites are also shown on map (Nyagatare in the north and Kayonza in the south), with the sampling plots shown as 620 
white circles.. 

 
 

 
Figure 9. Predicted vs measured SOC based on predictions made from Landsat 8 reflectance for the two study sites. The black dots 625 
are training data, while the red crosses show independent validation results. 
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Figure 10. Map of soil organic carbon (SOC) predicted based on Landsat 8 satellite imagery and soil data from the LDSF plots. The 
two sites are also shown on map (Nyagatare in the north and Kayonza in the south), with the sampling plots shown as white circles. 630 
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